Scalable Scientific Workflows Management System SWFMS

نویسنده

  • M. Abdul Rahman
چکیده

In today‟s electronic world conducting scientific experiments, especially in natural sciences domain, has become more and more challenging for domain scientists since “science” today has turned out to be more complex due to the two dimensional intricacy; one: assorted as well as complex computational (analytical) applications and two: increasingly large volume as well as heterogeneity of scientific data products processed by these applications. Furthermore, the involvement of increasingly large number of scientific instruments such as sensors and machines makes the scientific data management even more challenging since the data generated from such type of instruments are highly complex. To reduce the amount of complexities in conducting scientific experiments as much as possible, an integrated framework that transparently implements the conceptual separation between both the dimensions is direly needed. In order to facilitate scientific experiments „workflow‟ technology has in recent years emerged in scientific disciplines like biology, bioinformatics, geology, environmental science, and eco-informatics. Much more research work has been done to develop the scientific workflow systems. However, our analysis over these existing systems shows that they lack a well-structured conceptual modeling methodology to deal with the two complex dimensions in a transparent manner. This paper presents a scientific workflow framework that properly addresses these two dimensional complexities in a proper manner. Keywords—Scientific Workflows; Workflow Management System; Reference Architecture

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallelization in Scientific Workflow Management Systems

Over the last two decades, scientific workflow management systems (SWfMS) have emerged as a means to facilitate the design, execution, and monitoring of reusable scientific data processing pipelines. At the same time, the amounts of data generated in various areas of science outpaced enhancements in computational power and storage capabilities. This is especially true for the life sciences, whe...

متن کامل

Athena: Text Mining Based Discovery of Scientific Workflows in Disperse Repositories

Scientific workflows are abstractions used to model and execute in silico scientific experiments. They represent key resources for scientists and are enacted and managed by engines called Scientific Workflow Management Systems (SWfMS). Each SWfMS has a particular workflow language. This heterogeneity of languages and formats poses as complex scenario for scientists to search or discover workflo...

متن کامل

GExpLine: A Tool for Supporting Experiment Composition

Scientific experiments present several advantages when modeled at high abstraction levels, independent from Scientific Workflow Management System (SWfMS) specification languages. For example, the scientist can define the scientific hypothesis in terms of algorithms and methods. Then, this high level experiment can be mapped into different scientific workflow instances. These instances can be ex...

متن کامل

SAASFEE: Scalable Scientific Workflow Execution Engine

Across many fields of science, primary data sets like sensor read-outs, time series, and genomic sequences are analyzed by complex chains of specialized tools and scripts exchanging intermediate results in domain-specific file formats. Scientific workflow management systems (SWfMSs) support the development and execution of these tool chains by providing workflow specification languages, graphic...

متن کامل

A P2P Approach to Many Tasks Computing for Scientific Workflows

Scientific Workflow Management Systems (SWfMS) are being used intensively to support large scale in silico experiments. In order to reduce execution time, current SWfMS have exploited workflow parallelization under the arising Many Tasks Computing (MTC) paradigm in homogeneous computing environments, such as multiprocessors, clusters and grids with centralized control. Although successful, this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016